Solution:
അവയുടെ വിസ്തീർണ്ണം സംഖ്യാപരമായി അവയുടെ ചുറ്റളവിന് തുല്യമാണ്. ഇത്തരം രൂപങ്ങളെ “equable shapes” എന്ന് പറയും . ഈ സ്വഭാവമുള്ള വേറെയും പല രൂപങ്ങൾ വരയ്ക്കാം
Their area is numerically equal to their perimeter.
Many such shapes are possible: Such shapes are called equable shapes Best Explanation : Umesh P Narendran Property 1: The area, expressed in square units, is numerically equal to the perimeter.
The circle has area of 4π sq. units, and perimeter of 4π units.
The square has area of 16 sq. units, and perimeter of of 16 units.
The triangle has area of 30 sq. units, and perimeter of 30 units.
Other examples:
A triangle with sides 6, 8, 10. Area = 24 sq. units, Perimeter = 24 units.
A rectangle of length = 6 and breadth = 3, Area = 18 sq. units, Perimeter = 18 units.
A regular hexagon of side (4/sqrt(3)). Area = 8 * sqrt(3) sq. units. Perimeter 8 * sqrt(3) units.
Property 2: All have an inradius of 2. Inradius is the radius of the larger circle that can be inscribed in the shape.
Other examples:
Any rectangle of shorter dimension 2.